@Override public void runOpMode() { robot.init(hardwareMap); telemetry.addData(s: "Status", o: "Initailized"); telemetry.update(); int cameraMonitorViewId = hardwareMap.appContext.getResources().getIdentifier(name: "camera detector = new Pipeline() Programming webCam = OpenCvCamer .get(WebcamName.class, webCam.openCameraDev FtcDashboard.getInst webCam.startStreamin ⁻): Workshop webCam.setPipeline(d while(!isStarted() & position = detector. telemetry.addData(s: "position", position); telemetry.addData(s: "totalC", detector.totalC); telemetry.addData(s: "totalCB", detector.totalCB); telemetry.addData(s: "totalCC", detector.totalCC); telemetry.update();} int number = 0;

What is programming?

robot.armWobble(F

Process of creating a set of instructions that tell a computer how to perform a task
Basically, what makes the robot function

rf = null;

What is a programming language?

robot.armWobble/

Any of various high-level languages used for computer programs
Ex. Java, C++, Python

catch(Exception p_exception) {
 rf = null;

What is Java?

&& !pressingltr) {

gger > 0.1)) {

 An object-oriented programming language that produces software for multiple platforms

catch(Exception p_exception) {
 rf = null;

How to learn Java?

} else

robot.armWobble(P

eee = false

ad2.right_stick_y, n

S& !pressingltr) {

Free Online Resources

• Codecademy

• AP Computer Science A

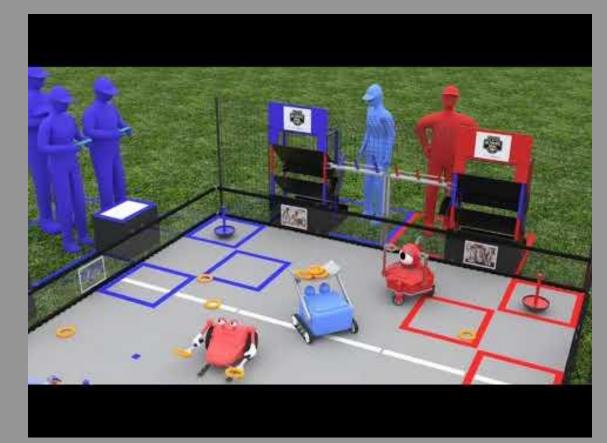
What is an SDK?

- Stands for Software Development Kit
- Brings together group of tools that enable programming of mobile applications and robots
- Allows pre-programmed processes to call on
 - Ex. Java's Math class

What is the FTC SDK?

• SDK design specifically for FTC programming

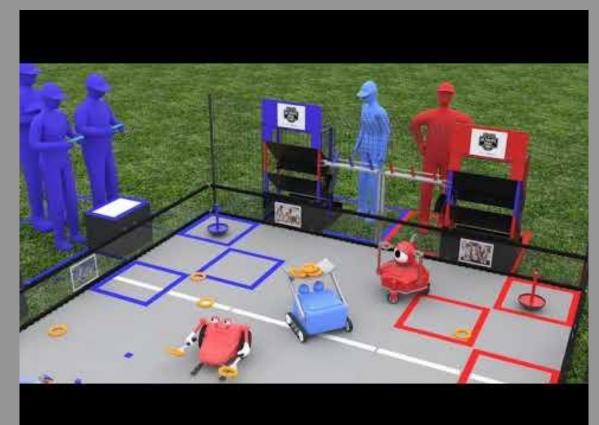
gger > 0.1)) {


- Provides specific programmed processes
 - Ex. Calling robot.setPower(0)
- Link will be provided as soon as released

Aspects of FTC Competition:

- Two periods with different goals
 Autonomous First 30 seconds
 TeleOp Remaining 2:00
 minutes
 - Endgame Last 30 seconds of TeleOp

Autonomous Period



Autonomous Period

- Only pre-programmed instructions
 - Drivers do not control robot
- Different goals than in other parts of competition

TeleOp Period

TeleOp Period

- Driver controlled
- Two Driver
 - Primary Driver: Controls driving
 - Secondary Driver: Controls subsystems

TeleOp Period

Sensors

- Gyroscope
- Camera
- Color Sensor
- Touch Sensor

Gyroscope

- Provides accurate angles
- Recommended for precision turning
- Built into Control Hub

Camera

- Used for computer vision
 Allows to detect different colors, darknesses, etc.
- Detect starter of rings

Color Sensor

- Detect colors
- Determine whether something passes
 Ex. Rings going through intake
- Sometimes distance sensor
- Driver Automations

Touch Sensor

- Determine contact between two surfaces
- Driver Automations

Motors vs. Servos

- Motors
 - Work with time and encoders
 - Usually used with wheels
- Servos
 - Use positions to complete motions
 - Work only with time or waiting for completion

MOVEMENT TRACKING

- Time Based
- Encoders
- Odometry

<u>TIME BASED</u>

- Uses time (seconds, minutes) to control motion
- Advantages:
 - Travel a distance for a specified time
- Disadvantages:
 - Does not insure for accurate distance
 - Motor/servo only runs as long as programmed for
 - Does not account for slippage

- Plug into motors
- Advantages:
 - Travel precise distances
- Disadvantages:
 - Does not account for slippage
 - Slippage increases as robot travels faster

<u>Odometry</u>

- Uses vertical and horizontal wheels to calculate where to move
- Advantages:
 - Accounts for slippage
 - Travel accurate distances
 - Allows robot to plot own path
- Disadvantages:
 - More difficult to program
 - Wheels difficult to align

Programming in Action

@Override

public void runOpMode() {

robot.init(hardwareMap);

telemetry.addData(s: "Status", o: "Initailized");

telemetry.update();

int cameraMonitorViewId = hardwareMap.appContext.getResources().getIdentifier(name: "camera
detector = new Pipeline();

webCam = OpenCvCameraFactory.getInstance().createWebcam(hardwareMap.get(WebcamName.class,

webCam.openCameraDevice

FtcDashboard.getInstan
webCam.startStreaming(
webCam.setPipeline(det

Questions?

```
while(!isStarted() && !isStopRequested()) {
```

```
position = detector.position;
```

```
telemetry.addData( s: "position", position);
telemetry.addData( s: "totalC", detector.totalC);
telemetry.addData( s: "totalCB", detector.totalCB);
telemetry.addData( s: "totalCC", detector.totalCC);
telemetry.update();}
int number = 0;
```

Important Programming Links

Android Studio

Codecademy

This Presentation

Club Announcements

Robotics Application Form

Insurance Website

Club Communication

Remind Text @phuhsro to 810-10

Discord

